Homework 10 PS405

Due: Monday, November 13, 2016

Problems are from "The Physics of Nuclei and Particles," by Richard A Dunlap

Chapter 3

•		
3.4	(a)	For an 8 MeV α -particle incident on Au nuclei. What is the impact parameter when the particle is scattered at 90°?
	(b)	b = fm What is the point of closest approach for the α -particle scattered at 90°?
	(c)	r_{min} = fm What is the kinetic energy of the $lpha$ -particle at the point of closest approach?
		KE _{min} = MeV
3.6	(a)	Using the data shown in Figure 3.9, estimate the width of the surface region of a nucleus; that is, the distance over which the density drops from 90% of its central value to 10% of its central value?
		t = fm
	(b	Using the result of part (a), estimate the value of a in equation (3.18).
		a =
3.7	(a)	For 10 MeV α -particles incident on Au nuclei, calculate the total scattering cross section for scattering angles $\theta>1^o$, $\theta>5^o$, and $\theta>20^o$.
	(b)	For the conditions given in part (a), calculate the differential scattering cross section for $\theta=1^o$, $\theta=5^o$, and $\theta=20^o$.
3.8	(a)	For the scattering of 0.1 MeV electrons from ^{119}Sn nuclei, calculate the relative size of the relativistic correction to the differential scattering cross section for scattering angles of 20° and 90° .
	(b)	Repeat part (a) for 1 MeV and 100 MeV electrons.